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Abstract. The molecular field theory of nematics is rephrased in density functional 
language. The free energy in the nematic state is expressed as a functional expansion 
around the isotropic state in powers of the nematic order parameters 4 and the fractional 
density change q at the isotropic-nematic transition. The crucial quantities in the 
expansion are spherical harmonics of the direct correlation functions in the isotropic state. 
Sensible approximations to these direct correlation functions lead to other well known 
formulations of nematic field theory. An exact (in our approximation) rzsult for 7 is 
obtained in terms of the potential parameters Uf and the order parameters PI at the phase 
transition. We discuss the relationship of our approach to other microscopic theories of 
nematics. The theory can be extended to discuss inhomogeneous systems. 

1. Introduction 

Over the last few years there has been much interest in the so-called liquid crystal 
mesophases (Chandrasekhar 1977, de Gennes 1974). These systems exhibit symmetry 
intermediate between that of the isotropic fluid phase and that exhibited by the 
complicated crystallography of solid phases. They do, however, flow like liquids, 
although generally the extra symmetries generate a rather complicated hydrodynamics. 
Liquid crystals have aroused interest partly because of the fundamental statistical 
mechanics involved, and the wealth of associated order parameters and defects, and 
partly because of their technological application, particularly in visual display systems. 
One of the most studied liquid crystal states is the nematic state, in which long 
molecules preferentially line up in some direction; in these systems there is complete 
translational invariance, but not complete angular invariance. It is the study of the 
nematic state and in particular the transition between the isotropic liquid and the 
nematic state which we undertake in this paper. 

The gross features of the statistical thermodynamics of the nematic state are 
relatively well understood. Heavily anisotropic molecules in a dense fluid may adopt 
a non-uniform angular distribution, and this distribution gives rise to an effective 
anisotropic external potential acting on each individual molecule. The consequence 
is that the non-uniform angular distribution may be stabilised, and for sufficiently low 
temperatures the resulting thermodynamic state is globally as well as locally stable. 
All molecular field theories of the nematic state adopt this perspective; they differ 
in the detail of how exactly to calculate, from microscopic first principles, the effective 
or pseudo-potential as a function of the distribution. The early theories of Onsager 
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(1949) who supposed that volume exclusion effects were dominant, and of Maier and 
Saupe (1958, 1959, 1960) who in contrast supposed that long-range dispersion effects 
were responsible for the nematic phase, are well known; subsequently it has become 
evident that some combination of these effects exists, and a summary of more recent 
work on molecular field theories is given by Luckhurst and Gray (1979). 

All molecular field theories involve calculation of a free energy as a function of 
angular distribution function f(o), where w represents solid angle, and f ( w )  is nor- 
malised. Our reformulation of such theories is no exception. What we are able to 
do is to define precisely from a microscopic starting point how the free energy is to 
be calculated and to show how the terms of a given order in the order parameters 
(which we define more precisely below) are to be calculated. What we in fact do is 
to reformulate the Maier-Saupe theory to show that, if correctly interpreted, the 
predictive value of this theory does not depend on the range of the assumed inter- 
particle potential, as has sometimes been supposed. 

In this paper we shall use the density functional language to describe the nematic 
state near the nematic-isotropic transition. This approach, which in the liquid crystal 
context has been pioneered by Stecki and Kloczkowski (1979), makes it possible to 
show that the Helmholtz free energy of a state with given density profile p(r ,  w )  may 
be written as a unique functional of p (r, w ) .  One may then use sensible approximation 
techniques to write down the free energy. This approach has been fruitful in under- 
standing the behaviour of the electron gas (Hohenberg and Kohn 1964, Kohn and 
Sham 1965), in describing atomic liquids (Evans 1979), and in what we believe to be 
the best current theory of freezing (Ramakrishnan and Yussouff 1979, Haymet and 
Oxtoby 1981). In a recent paper we have discussed the application of densityfunctional 
theories to simple molecular fluids (Sluckin 1981), and there are close parallels between 
the present work, and both our previous work, and the Ramakrishnan-Yussouff 
melting theory mentioned above. We shall also be concerned with functional deriva- 
tives of the free energy with respect to the local density, and this causes the Ornstein- 
Zernike direct correlation function of the isotropic fluid to play a prominent role in 
the theory. As hinted above, it is in the study of inhomogeneous fluids that the density 
functional approach has proved particularly useful, and in subsequent papers we shall 
apply the formalism developed in this paper to inhomogeneous situations. In particular 
we shall be interested in the nematic-isotropic interface, the nematic-vapour interface, 
and nematic effects in fluids near walls. 

We may regard the theory expounded in this paper as a mesoscopic theory of the 
isotropic-nematic transition. In spirit it lies between a fully microscopic theory-in 
which the liquid partition function is evaluated, and a macroscopic theory-which 
depends totally on a number of phenomenological parameters. The mesoscopic theory 
provides a link between the macroscopic theory, for instance Landau-de Gennes 
theory (Stephen and Straley 1974, de Gennes 1969), and the microscopic input, which 
in this case is the intermolecular potential of the molecules making up the nematogen. 
This link is provided through moments of the Ornstein-Zernike direct correlation 
function. One may obtain information about the direct correlation function either by 
solving the integral equations of classical liquid theory (Hansen and McDonald 1976), 
or by interpretation of experimental scattering data; alternatively one may merely 
parametrise the direct correlation function. The eventual aim of a microscopic theory 
of nematics is to understand the dependence of liquid crystal properties upon molecular 
chemical structure. We hope that this work will be a stage along this road. However, 
real intermolecular interactions are complicated; our idealisation will be to treat 
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molecules as cylindrically symmetric point centres of potential. This idealisation is 
rather major, and precludes quantitative understanding of major chemically important 
features of liquid crystal behaviour. 

It is also important to emphasise a major drawback in our theory. All mean-field 
theories are at best incomplete descriptions of phase transition behaviour. In the case 
of the nematic-isotropic transition it seems that the effect of molecular orientational 
fluctuations is not correctly taken into account whichever mean-field theory is used 
(Nelson and Toner 1981). Indeed, it is only for d-dimensional systems for d > 6  that 
a mean field theory of the nematic-isotopic transition becomes correct. However, it 
is difficult to make a link between the gross features of the transition and the fluid 
microscopic properties. It is also useful to optimise the information which may be 
obtained from mean-field theories, and to discuss the nature of the assumptions which 
underly them, assumptions which may be different from the explicit assumptions of 
the authors. 

The material in the paper is arranged as follows. In 8 2 we briefly summarise the 
density functional theory as applied to simple molecular fluids. In § 3 we use this 
material to make a functional expansion of the free energy around the isotropic state. 
It is at this stage that it becomes clear how important is the spherical harmonic 
expansion of the direct correlation function. We solve the resulting equations in order 
to describe the nematic state at the nematic-isotropic transition. In 8 4 we examine 
closely the theory of the nematic state in our language, and its relationship to the 
phenomenologies of Onsager (1949) and Maier and Saupe (1958, 1959, 1960). We 
show that in the limit of zero compressibility our theory reduces to that of Maier and 
Saupe, and provides a microscopic formula for the Maier-Saupe pseudopotential U. 
We discuss the relationship between our formula for U and some expressions derived 
by other authors. We also derive a simple formula for the density change at the first 
order nematic-isotropic transition. Finally in D 5 we make some concluding remarks. 

2. The molecular density functional theory 

2.1. Preparatory comments 

We shall be concerned throughout this article with a fluid of axially symmetric rigid 
molecules, each of which is at a position defined by r ,  and has an orientation defined 
by a solid angle w ,  which needs only two Euler angles 0, cp to specify it. Two molecules 
( r l ,  ol), (r2, w 2 )  interact with a potential energy U ( r I 2 ,  wl, w z ) ,  where r I 2 = r 2 - r l ,  
and there exists a spherical harmonic expansion 

U(r,  w1, Q J ~ )  = C C U(l1,1z,I, r)C(I1,12,I; ml, mz, m )  
1 1 .  ! 2 ,  ! m i . m > . m  

x Y ! , m ,  ( ~ 1 ) Y i z m z  ( ~ 2 ) Y / m ( ~ r )  (2.1) 

where C(I1, 12, 1; m l ,  m2, m )  are Clebsch-Gordan coefficients and Y i m ( w )  are the 
usual normalised spherical harmonics. The vector r is defined by magnitude r and 
direction w,. 

The mean density of the fluid p ( r ,  w )  may be expressed as a spherical harmonic 
expansion: 

( 2 . 2 )  p ( r ,  w )  = C p i m ( r ) Y i m ( w ) .  
Lm 
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In nematic liquid crystals the molecules at a point r are predominantly lined up 
in a particular direction, known as the director. A unit vector in this direction, 
designated here [ ( r ) ,  is a local axis of symmetry, and the angular distribution function 
p (r,  W )  is symmetric with respect to rotations around this axis; more formally. 

p ( r ,  W )  = p ( r ,  n * ( w ~ . f )  

where A ( U )  is a unit vector in the direction w.  In the particular case when the director 
lies along the z axis, 

(2 .3 )  

where 

n r ( r )  = dwp(r, w)P,(cos 8 )  (2 .4 )  I 
and Pr(cos 0 )  is the Legendre polynomial of order 1. 

tensor expansion. In this case 
It will be convenient for some purposes to describe p (r,  o) in terms of a Cartesian 

(2 .5 )  ~ ( r ,  0) = (1/4.rr)~o(r)+~n^,(~)n*,(W)q,,(r)+ . . .I 

qr, = fqPi i l* ,  -&,I (2 .6 )  
and 1 is the nematic director, supposed along the z axis. Comparing (2 .4 )  and (2 .6 )  
one may easily verify that 

P ( r )  = no@) ( 2 . 7 ~ )  

q ( r )  = d r ) .  (2 .7b)  

The Cartesian tensor expansion is useful when dealing with the statistical mechanics 
of non-uniform fluids. 

where 

We may also define the angular distribution function f ( r ,  U )  where 

P ( r ) f ( r ,  W 1 = p ( r ,  0 1 
and 

f ( r ,  w )  dw = 1. 5 
The nematic order parameters pl are then 

Pl ( r )  = P,(cos 8 ) f ( r ,  W )  dw 

and 

p F l =  nl. 

(2 .10)  

(2 .11)  

2.2. The density functional theory 

The state of the molecular fluid is defined by the density distribution function p ( r ,  w ) .  
There exists a unique free energy functional gGCp(r, U ) ] ,  such that in the presence of 
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external fields Vext(r, w )  the total Helmholtz free energy is given by 

F = 9[P (r, w )] + dr  dw Vext(r, w ) p  (r,  U ) .  I 
The grand thermodynamic potential is given by 

a= F -F p(r ,  w )  dr  dw 

where p is the chemical potential. 
The functional 9 [ P ( r ,  U ) ]  may be further subdivided as follows: 

%(r, w ) 1 = 9 1 d e a l b ( r ,  w) I -@b( r ,  w ) ]  (2.14) 

where 9 reduces to %,deal when there is no molecular interaction. g i d e a l [ P  (r, w )I and 
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(2.12) 

(2.13) 

(r,  w ) ]  are also unique functionals of p(r ,  w ) .  

s i d e a l b ( r ,  w ) I = k B T  dr  dwp(r ,w)[ ln(b(r ,  w ) ) - l I  I 
where A is a quantum parameter. 

c (r1, w1; r2 ,wz)  

The Ornstein-Zernike direct correlation function is defined by 

1 s z@ -- - 
kBT &(ri, wi)sP(rz ,  wz)' 

In an homogeneous liquid we may write 

c(r1,w1; rz, w z ) = c ( r 1 2 , ~ 1 , w z ) .  

Finally the grand thermodynamic potential obeys a minimum principle: 

( S n / S p ( r , w ) ) = ( S ~ / S p ( r , w ) ) +  V e x t ( r , w ) - p  = O  

and the one-particle direct correlation function is defined by C(r,  U ) :  

kBTC(f, o ) = s @ / & ( r ,  U ) .  

-kBTC(f, w )  plays the role of an effective external potential. 

(2.15) 

( 2 . 1 6 ~ )  

(2.166) 

(2.17) 

(2.18) 

(2.19) 

For a more extensive discussion of the points in this section we refer the reader 
to other works (Evans 1979, Haymet and Oxtoby 1981, Sluckin 1981). We note, 
however, that a spherical harmonic expansion of c(r12, wl, w z )  may be made, in the 
same vein as equation (2.1). 

3. The nematic state 

We consider the free energy of a fluid with constrained density p (r, w 1, in an external 
potential V(r,w) ,  such that this state may be regarded as close to a locally stable 
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isotropic state with density po(w) = n1/47r. Then the Helmholtz free energy is 

F = gldealb (r,  11 - ab (r,  + J V(r, )p  (r, w dr  dw. (3.1) 

We make a functional expansion of @.[p (r, U)]  around @CpO(w)], in powers of Sp (r, w )  = 
p ( r ,  w)-p0(w), as far as second order in S p ( r ,  w ) .  Then, using equations (2.16) and 
(2.19) 

+ikBT dr dr’dw dw‘cr(r’-r,w, w’)&(r ,w)Sp(r ’ ,  0 ’ ) + O ( S p 3 )  (3.2) I 
where C, = C0(o) ,  the value of C ( r ,  W )  in the isotropic state, and cI ( r ’ - r ,  w,  U ’ )  is 
defined in the isotropic state at density nI .  

We thus obtain, using equations (3.1), (3.2), (2.13) and (2.15) an approximation 
for the grand thermodynamic potential R, in the vicinity of the isotropic state: 

R = k B T /  d r d o  Cp i r ,o ) [ ln ( i ip ( r ,w) ) -1 ] -~ [po(w) ]  

+I d r  dwCp(r, w)[V(r, w ) - p ] -  keTCI S p ( r ,  U ) }  

-fkBT d r  dr’dw d w ’ c l ( r ’ - r , o , w ’ ) S p ( r , w ) S p ( r ’ , w ’ ) .  (3.3) I 
The stable states obey the variational condition (2.18) on R. For these states 

kBT(lll(Aip(f‘, w ) ) - ~ I -  c I ( f ’ - f ) & ( f ’ ,  w ’ )  dr’dw’ + V ( f ,  W ) - P  =o .  (3 .4)  I 
The stability of the isotropic state demands that 

k~T[ln(,\po(w)) - C I ] ~  = 0. (3.5) 

Substituting from equation (3.5) into (3.4) yields, for the anisotropic state with the 
same chemical potential p as the isotropic state 

or 

This general formulation applies to uniform as well as non-uniform states. If we now 
specialise to the case when the anisotropic state is a uniform nematic, such that 
V(r, U )  = 0, and 

p ( r , W ) = p h ( W ) = n N f ( W i  (3.8) 
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we obtain 

(3.9) 

This is a self-consistent equation for pN(w). In order to locate the nematic-isotropic 
transition, it is necessary to combine equation (3.9) with the condition that the grand 
thermodynamic potentials in the isotropic and nematic phases are equal. From 
equation (3.3) we obtain 

A m P  (w 11 = ab (w 11 - f l [ p O ]  

=kBT[ dr  dw[p(o) ln (Ap(w)) -pnln(Apn)-Sp(w)(  l+Cr--- ksT ’ )] (3.10) 

- f  kBT dr  dr’ dw dw’ CI(r’ - r ,  U,  w ’ ) S p ( ~ ) S p ( w ’ ) .  J 
If p (0) = ~ N ( w ) ,  we may apply equations (3.5) and (3.6) to yield 

[PN(W)I=~BT J d w b ~ ( w )  ~~@N(W)/PO)-SPN(W)I  
V 

- f  kBTJ cI(r, w, w ’ ) S p ~ ( u ) S p ~ ( w ’ )  dr d o  dw’ (3.11) 

where V is the volume of the system. 
In order to locate the isotropic-nematic phase transition, (3.9) and (3.11) must be 

solved self-consistently; the Ornstein-Zernike direct correlation function must 
somehow be determined for the isotropic molecular fluid as a function of density and 
temperature. 

Equation (3.9) and (3.11) may be combined to produce the exact result that 

This formula holds for the difference of grand thermodynamic potential between two 
locally stable states, one isotropic and one nematic, at the same chemical potential. 

We note that in a more sophisticated theory the functional expansion (3.2) of 
@[P(r,  U ) ]  could be taken to higher order in S p ( r ,  U ) .  The next term in this expansion 
is 

&kBTj drl dr2 dr3 dwl dw2dw3 Sp(r1, wl!Sp(r2,w~)Sp(r3, w3)c3(rl, w l ;  r2, W Z ;  r3,w3) 

where ~3(r1 ,  wl; r2, w 2 ;  r3, w3) is the three-particle direct correlation, and is the func- 
tional derivative 

Sc(r1, Ul; r2, wdlSp(r3,  w3). 

However, it seems likely that this term is not important for many physical purposes 
although in quantitative applications it may well be necessary to evaluate it. 
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3.2. Mean field theory in spherical harmonic language 

We now re-express the functional Aa[PN(w)] in equation (3.1 1) in the conventional 
spherical harmonic language. The theory will then be identical to conventional 
mean-field theories, but with a new identification of the mean-field parameters. 

We define, analogously with equation (2.1) 

(3.15) 

where 6no is the change in density between the isotropic and nematic phases and define 

The functional (3.11) may now be shown to be equal to 

A l l  - = dw p N ( w )  ln('*) - kBTGno 
~ B T  Po 

This may now be expressed in terms of the fractional density change 

77 =(nN-nI)lnI (3.18) 

the angular distribution functions fN(w) defined in equation (2.8), and the order 
parameters A defined in equation (2.11). We obtain 

(3.19) 

This may be cast in familiar form in the following way. 
(i) We define the potential parameters Ul by 

Ui[nI, TI = k ~ T [ ( 2 1 +  1) /4~r] ' /*n~c~(I ,  1, 0; nI, T) .  (3.20) 

(ii) We separate the ideal gas contribution to the free energy into orientational 
and density components: 

dW(l+T)fN(w) ln[(l+77)4dN(W)I 

(3.21) 
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(iii) We make a small q harmonic expansion of the density contribution to the 
free energy A i l  (Evans 1979, Sluckin 1981) 

(3.22) 

(3.23) 

where x is the isothermal compressibility of the isotropic liquid at density n I  and 
temperature T. 

We thus obtain from equation (3.19) a functional form for the change in grand 
thermodynamic potential, as a functional of the angular distribution function fN(w), 
the order parameters PI, and the fractional density change q 

The functional (3.24) is stationary for equilibrium or meta-equilibrium, In such a 
situation 

(3.25) 
fN(w)=-exp(~ 1 ( l + q ) ~ ~ ~ l ( c o s e ) ~ I / k e ~ )  

4TZ I 

Z = & [  exp(x  I ( l+q)~I~I(cosB)U~/keT)  dw (3.26) 

= n I k B T ,  In 2. (3.27) 

One may also derive an analogue to equation (3.12), giving an exact result for A i l  in 
terms of P, and q 

(3.28) 

4. Applications of the density functional theory 

4.1. Relationship to other mean field theories 

4.1.1. Muier-Saupe theory. This follows immediately from equation (3.24), assuming 
that the isothermal compressibility ,y in the isotropic phase is zero, and hence that 
the fractional density change at the nematic-isotropic transition q is zero. The {Ul} 
may now be treated as phenomenological parameters. In particular, if all VI = 0 apart 
from UZ, it is known that kBTN-I = 0.2203 UZ. This is of course an idealised assumption, 
though in practise we expect that limI+m UI = 0. A further discussion is given in the 
book edited by Luckhurst and Gray (1979). 

4.2.2. Onsager theory. Modern theories of liquids provide a diagrammatic expansion 
for c ( r ,  w, U ’ )  (Hansen and McDonald 1976). The leading, density independent term 
in this expansion is the Mayer f function 
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In the Onsager approximation, we approximate c (r,  w, U ‘ )  by f ( r ,  w, a’), and assume 
the only intermolecular interactions to be volume exclusion effects. Thus in this 
approximation 

if a configuration (0, wl), (r12, w 2 )  is 
forbidden on volume exclusion grounds. 

c(r12, wl, w2) = -1 

= O  otherwise. 

If we also assume x = 0, we may rewrite equations (3 .11)  and (3.25) as 

where 

dr. 
forbidden 

configurations 
I cexc,(w. U ’ )  = 

This is precisely the Onsager formulation. It is immediately clear that in this approxi- 
mation there are no temperature effects, and that any transition is dependent only 
on nI ,  and molecular shape. 

Poniewerski and Stecki (1979) have derived expressions for the Frank elastic 
constants in terms of c ( r ,  w,  U ‘ ) ;  they have labelled the approximation c ( l , 2 )  = -1 
for volume excluded configurations as the Onsager approximation. Priest (1973) has 
effectively used this approximation to calculate the Frank elastic constants. 

4.1.3. Generalised mean field theory. We now discuss approximation methods which 
may be useful in computing the spherical harmonics CI(I1, 1 2 ,  I ;  r ) .  Under some 
circumstances (Hansen and McDonald 1976) one may divide the intermolecular 
interaction into a reference and a perturbation component: 

U h ,  W I ,  w2) = Udr12, w ) + A U l h ,  WI, w2) (4.4) 
The parameter A is a perturbation parameter. Thermodynamic functions of the real 
liquid may then be expressed in terms of thermodynamic functions of the reference 
liquid interacting with the potential Uo, in a perturbation series in A.  The following 
exact formula is obtained (Evans and Schirmacher 1978) for the direct correlation 
function 

c(r12, W I ,  W - C O ( ~ I ~ ,  w1, w2) 

x p ? ’ ( r ; ,  U ; ;  ri ,  w i ) U I ( r i * ,  U ; ,  0;) (4.5) 
where the real liquid has A = 1, the subscripts 0, A represent properties of the reference 
system and the system with potential U,,+AU1 respectively, and 

~ ‘ ~ ’ ( r l ,  01; r 2 , ~ )  = p ( r l ,  w1)s(r12)~(w12)+p(rl ,  wl)p(r2, w ~ r 1 2 ,  w1, w2) (4.6) 
is the two-particle density distribution function, and g(rI2, wl, w 2 )  is the usual pair 
distribution function. 

If we suppose that the binding energy of the liquid is due to isotropic forces, and 
the anisotropic forces are ‘weak’ and long ranged in character, we may suppose that 
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U. and hence co, g o  are isotropic 

Uo(r12, w1, w2) = Uo(r12) go(r12, w1, w2) =go(r12) (4.7) 
cob, w1, w2)  = cob) 

whereas U1 only has anisotropic components. If we further make the approximations 
in (4.5) that pi’)  = p f ’  and ignore the density dependence of the pair distribution 
function in the functional differentiation in equation ( 4 . 3 ,  we obtain 

c (r12, wl, w 2 )  = co(r12)- ( 1 l k ~ T )  U l h ,  01, w2)go(r12). (4.8) 

One may easily see, comparing the harmonic expansions (2.1) and (3.14), that (4.8) 
implies (I # 0) 

(4.9) C U I ,  L1, r )  = -U/~BT)UIUI, Lk r ) g o ( r )  

and hence the effective potential, from equation (3.20), is approximated by 

(4.10) 

This result has previously been obtained, by a different method, by Luckhurst and 
Gray (1979). 

The very simplest approximation, often called the random phase approximation 
(RPA), consists of putting g o ( r )  = 1 in equation (4.10); this corresponds to the earliest 
efforts of liquid crystal mean-field theory (Maier and Saupe 1958, 1959, 1960). A 
more sophisticated approximation consists of replacing p !i2)(r12, wl, w2) by 
P O  (r12, w1, w2)  in equation (4 .9 ,  but then not ignoring the density dependence of 
the pair distribution function. In atomic fluids this approximation has been labelled 
the mean density approximation (MDA) (Henderson and Ashcroft 1976). Work on 
structure factors for low q in atomic liquids, which uses essentially equation (4.5), has 
shown that there can be significant differences between the MDA and the RPA 
(McLaughlin and Young 1982). 

We note, however, that the result (4.10) or variations thereof is only likely to give 
even approximate results if the separation of the potential into an isotropic portion 
U. and a weak anisotropic portion U1 gives a good description of the liquid structure. 
The crucial approximation is that pi2)(r12, w1, w2) = P O  (r12, w1, 0 2 )  over the range of 
r12 in which U1(l, I ,  0; rI2) is large; in this case the liquid structure is well described 
by a liquid interacting with potential Uo. This is certainly true for some model systems, 
but in real liquid crystals there are likely to be significant steric effects. As yet, 
however, there has not been much work on the determination of the direct correlation 
function of molecular fluids of strongly anisotropic molecules (Blum and Torruella 
1972). 

(2) 

(2) 

4.1.4. Generalised van der Waals theory. In this approach (Gelbart and Ben Shaul 
1982) a nematogen with distribution function p (r,  w ) ,  at uniform density n, is thought 
of as consisting of a reference system of hard anisotropic molecules with volume uo, 
while in addition these molecules have an attractive interaction Ul(r,  w, U ’ ) .  The 
Helmholtz free energy of the nematogen may then be written, in the spirit of perturba- 
tion theory, 
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The free energy of the reference system of anisotropic hard molecules is 

Freference = % c i e a l b ( r ,  w ) ] - i k ~ T ( 1  

x [ P ( r , w ) P ( r ‘ , w ’ ) M ( r ’ - r , w , U ’ ) d r d r ’ d w  dw‘ (4.12) 
J 

where qo = nuo is the packing fraction 

M ( r ’ - r ,  w ,  U ’ )  = -1 

= O  

and 

if molecules at (r,  w ) ,  ( r ’w’)  overlap 

otherwise. 

We note that j M ( r ,  U, U ’ )  dr = uexcl(w, 0’) and that apart from the factor of (1 - 
qO)-’ equation (4.12) resembles equation (4.3). 

Fperturbation - 7 P(r ,  w ) p ( r ’ ,  w ‘ ) U i ( r ’ - r ,  U ,  w ’ ) g H C ( r ’ - r ,  w ,  U ’ )  dr’ dw dw‘. (4.13) - ‘ J  
Here gHC(r, 0, w ‘ )  is the pair distribution function of the reference system, which 

gZE ( r , w , w ’ ? = M ( r , w ,  u ’ ) + l .  (4.14) 

This formulation may now be compared with the general formulation (3.1 1). From 
the point of understanding the fluid nematic properties, it is equivalent to making the 
approximation 

1 
kBT 

for many purposes may be approximated by 

c(r, U,  w ’ )  =cHC(r,  w, U’) - -  Ul(r, w ,  w ’ )  

cH&, w, U ’ )  =-(I --TO)-’M(r, w, U’). 

( 4 . 1 5 ~ )  

(4.15b) 

Equation ( 4 . 1 5 ~ )  has been written down as equation (4.8) above; the only difference 
is that here c d r ,  w,  w ‘ ) = c H C ( r r  w ,  w ’ )  is obtained using the recipe (4.15b). 

4.1.5. Landau-de Gennes theory. In the Landau-de Gennes theory of the isotropic- 
nematic transition (de Gennes 1969, Stephen and Straley 1974) the Gibbs free energy 
is written as a power-law expansion around the isotropic equilibrium position. We 
have preferred to use the grand thermodynamic potential per particle; with this slight 
alteration we have 

(4.16) 

An association is traditionally made between this expansion and terms in the 
Maier-Saupe expansion; in that expansion as in ours the full one-particle orientational 
distribution entropic contribution to the free energy is kept (a power-law expansion 
of this term shows very slow convergence). We may make a similar association of 
terms between our functional expansion in &(r, 0) and the expansion (4.16), thus 
assigning a microscopic value to a, 6, c in (4.16). We are not optimistic that correct 
evaluation will in fact explain the properties of the nematic-isotropic transition; we 
expect (a), that in the mean field regime the convergence will be sufficiently slow that 
higher order terms must be considered, and (b), that orientational fluctuations not 
included in (4.16) as it stands will be important and depress TN-,. 

For simplicity we ignore all terms in the functional expansion of AR except those 
in p2. We now consider the expansion of AR (3.111, using the expansion of Sp(r ,  0) 

ARlnI V = up: + bp: + cp:. 
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given by equation (2.3). It is also necessary to consider the expansion to O(Sp4), and 
this involves terms in c3(fl, w l ;  r2, w2; r3, w3) and 

C4(ri, W i ;  r2, w2; r3, W 3 ;  r4, w4) =[S/&(r4, wdl[c3(ri, w i ;  r2, w2;r3, w)I. (4.17) 

Straightforward though tedious analysis yields the results 

a = f (5 k BT - u2) 

where 

b = -5kBT - %U3 c = %kBT - &j U4 (4.18a, b, c)  

XP~(COS 03) dr2 dr3 dwl dw2 dw3 ( 4 . 1 9 ~ )  

625n3 
(457) 

U4=--a kBTJ C 4 h ,  01; r2,02; r3, w3; r4, wdP2(cos 01)P2(cos 02)P2(cos 03) 

X P ~ ( C O S  $4) dr2 dr3 dr4 dwl d ~ 2  dW3 dW4. (4.196) 

In the usual formulation 

a =a ’ (T-T*) .  (4.20) 

Using (4.15) and the general formula (4.10) for U2, we may derive 

U2 2: ~ B T C ~ H C +  U2att (4.21) 

where kBTcZHC is the contribution of steric effects to u2, and u~~~~ is the contribution 
of longer-range attractive forces. We thus obtain 

(4.22) 

=; k ~ ( 5 - C z ~ c ) ( T -  T*) (4.23) 

T* = U2att(5-C2~~)-~. (4.24) 

a = i [ k ~ T ( 5  - C Z H C )  - u 2 a t t l  

where 

4.2. Density change at the isotropic-nematic transition 

Given the approximate functional (3.25) the nematic-isotropic transition takes place 
when 

AR=O 

where AR is described by the ‘exact’ result (3.29). Hence at TN-I 

or to lowest order in the ‘small’ parameter ,y 

(4.25) 

(4.26) 

If we regard this result as a perturbation expansion in x, FI(T,-~) can be calculated 
from (3.11), (3.26) and (3.27) assuming q = O .  

Thus for the Maier-Saupe fluid, in which F2(TN4 = 0.44, 

U2 = ~ . % ~ B T N - I  and 7 = 0 . 4 4 n a k ~ T ~ - 1 .  (4.27) 
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We note that nIkBTX = Sd(0), the contribution of density fluctuations to the struc- 
ture factor in the forward direction. Typically (Evans and Schirmacher 1978) this has 
a value in the range 0.025-0.05. Substituting this into (4.13) yields typical values of 
7) of around 1-2%, which is in qualitative agreement with experiment. 

5. Discussion 

The distribution function p (r, w )  obeys the (exact) first BBGKY equation, which may 
be written either in terms of the direct correlation function 

D l n p ( r , w ) =  c ( r ’ - r ; w , w ’ ) D ’ p ( r ’ , w ’ ) d r ’ d w ’  I 
or in terms of the pair-distribution function 

D In p ( r ,  w ) = -- p ( r ’ ,  w ’ ) g ( r ’ - r ,  U,  w’)D’U(r’-r, 0, w ’ )  dr’dw’ kBT ‘I 

(5.1) 

(5.2) 

where D is a differential operator, and the differentiation may be taken covariantly 
with respect to angle or space. Molecular field theory assumes that short-range 
correlations are the same in the isotropic and nematic phases. The mathematical 
articulation of this assumption in our case is the validity of the functional expansion 
(3.2). Variational solution of the Euler-Lagrange equations of this expansion yields 
the solution for p ( r ,  0) given in (3.6). One may compare (3.6) and (5.1); it is apparent 
that the molecular field theory is equivalent to replacing the true (nematic) direct 
correlation function cN(rl - r ,  w ,  U ’ )  in (5.1) by its value in the isotropic phase. On 
the other hand, it is possible to consider (5.2) instead of (5.1) and replace the true 
g(r ,  w ,  U ‘ )  by gI(r,  W ,  U ’ ) .  This approach has been explored by Woo and co-workers 
(Shih et a1 1976, Lee and Woo 1977 and Chakravarty and Woo 1975a, b). 

Clearly this approach is closely related to ours. We prefer our approach for a 
number of reasons. Firstly, the direct correlation function is a shorter range function 
than the pair distribution function, and experience in the theory of non-uniform fluids 
shows that approximation of c ( r )  is more reliable than approximation of g ( r ) .  
Secondly, (5.2) is a rather unstable equation from a computing point of view. In 
particular, the derivative D U ( r ,  w, w ‘ )  is likely to be large just where the pair distribu- 
tion function is small, and errors are likely to be magnified. Similar problems bedevil 
the evaluation of the pressure through the virial theorem. Thirdly, use of equation 
(5.2) obscures the crucial role played in molecular field theory by the direct correlation 
function; (5.1) is a variational equation derived from the exact expression for the free 
energy, whereas (5.2) is a force balance equation and is not derivable from a variational 
approach. 

Because of the crucial role played by the direct correlation function, our approach 
emphasises the importance of studying this quantity in isotropic molecular fluids with 
strongly anisotropic components. For atomic fluids, perturbation theories are now 
reasonably successful in approximating the direct correlation function. The Percus- 
Yevick and HNC equations have been solved for molecular fluids with spherical cores 
but anisotropic long-range interactions (Gray and Gubbins 1982); however, when the 
hard-core interactions are themselves non-spherical there has been little work, partly 
because of mathematical difficulties-a formal approach has been studied by Wertheim 
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(1980, 1981)-and partly because simple molecular fluids can often be treated more 
fruitfully by considering site-site pair correlation functions (Gray and Gubbins 1982). 

In future papers in this series we shall extend the present work to deal with 
inhomogeneous liquid-crystal-like materials, and we shall study from a microscopic 
viewpoint, the surface tensions, surface widths and excess properties at the isotropic 
liquid-vapour, nematic-vapour, and isotropic-nematic interfaces. The free energy 
functional will be that used in equations (3.1) and (3.2) and expansions will be made 
in gradients of the density no and the order parameters p,, following the method 
outlined by us previously (Sluckin 1981). 
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